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For a specific three-dimensional vertex model, it is proven that it will show a 
first-order phase transition. The critical temperature is given in terms of the 
energy of some local vertex configurations. The approach used is similar to the 
Nagle approach. Some classes of compounds are considered which may be 
related to this model. 
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1. I N T R O D U C T I O N  

In the past half century many exact results have been obtained concerning 
the thermodynamic properties of  so-called vertex models. Originally vertex 
models were devised to describe compounds  containing hydrogen bondsJ  ~> 
Examples of  such compounds  are ice and K H 2 P O 4  (KDP) ,  which both  
contain units (oxygen or  phosphate)  coordinated tetrahedrally by four 
hydrogen atoms. <2) The coordinat ion of  these hydrogens satisfies the ice 
rule: two hydrogens are proximal to the central ion and the other two are 
distal to this ion. This rule can be obeyed by several configurations and for 
four-coordinated ions this number  equals six, hence the name six-vertex 
model. Although the ice-type compounds  in fact consist of  diamond-like 
networks, a simple square lattice network has in most  cases been employed. 
The reason for this is the fact that  there exists a relation between this 
model and the one-dimensional s = 1/2 Heisenberg model, which allows for 
a solution of  this Heisenberg model. Figure la shows an example of  a state 
which may occur in such a six vertex model, where every vertex represents 
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a coordinated ion and the position of the hydrogen ion is depicted by an 
arrow on its edge. 

There are six possible configurations around a vertex, which are given 
in Fig. lb. A numbering is also given to the different arrangements by 
specifying their energies. The general six-vertex model is defined by el = 82, 
e 3 = 8 4 ,  and 85 = 86. Special cases are el = 82 = 83 = 84 = 85 = 86 (two-dimen- 
sional analog of ice), e1=82=0 ,  8 3 = 8 4 = 8 5 = 8 6 > 0  (two-dimensional 
analog of KDP,  a ferroelectric), and 8 1 = 8 2 = 8 3 = 8 4 > 0 ,  85=86=0  (an 
antiferroelectric). 

For these types of models and extensions thereof (notably the eight 
vertex model) many thermodynamic properties have been calculated, such as 
the free energy, classification of possible phases, the spontaneous staggered 
polarization and correlation length of the antiferroelectric phase, and many 
other properties, tat For three-dimensional vertex lattices our knowledge of 
their properties is not as extensive as in the two-dimensional case. However, 
in the past 10 years, considerable success has been obtained in solving 
another three dimensional classical model, called the Zamolodchikov model 
and extensions thereof, t4-6> This model is a special case of the so-called 
"interaction-round-a-cube" model, consisting of a cubic lattice of interacting 
spins. When the spins can have two values (the generalization to multivalued 
spins also has been considered) and the Boltzmann weights occurring in this 
model are chosen in a specific way, the Zamolodchikov model emerges, 
which turns out to satisfy the tetrahedron relations (a three-dimensional 
analog of the star-triangle relation in ice-type models) and to have com- 
muting transfer matrices. Using these properties, the free energy of the model 
has been calculated, tS~ 

To enlarge our knowledge of properties of three-dimensional lattice 
models, we have previously considered a three-dimensional 20-vertex 
model tT) expecially in relation to the two-dimensional Heisenberg model. 
For this model we obtained exact results concerning its eigenfunctions for 
two reversed spins, tS~ 

gl s s s s s 
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Fig. 1. (a) A possible state occurring in the six vertex model. (b) All possible edge 
configurations. 
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A specific case of this 20-vertex model is comparable to the specific 
case of the 6-vertex model considered by Nagle. c9) He obtained proof of the 
occurrence of a ftrst-order phase transition in this model. In this paper we 
will apply his method to a specific case of the 20-vertex model, and prove 
that also in this case a first-order phase transition will occur. 

In the next section the model will be defined, in Sections 3 and 4 the 
free energy below and above To, respectively, will be calculated, and in the 
final section the results will be discussed. 

2. D E F I N I T I O N  O F  T H E  M O D E L  

As a basic lattice for the three-dimensional lattice model the ReO3 
lattice is used with a simple cubic lattice for the Re atoms and an O atom 
linearly between two neighboring Re atoms, such that Re is octahedrally 
coordinated and the octahedrons are corner connected. 

From this structure we make an abstract lattice of vertices (which are 
placed at the Re atom positions) and edges (connecting the nearest-neighbor 
Re atoms), which can have two directions as in the four-coordinated vertex 
model. Around one vertex one can construct 20 edge configurations as 
shown in Fig. 2. 

We will derive that a first-order phase transition occurs in a special 
case of the 20-vertex model. In this model we assume that the first two 
leftmost vertex configurations above each other in Fig. 2 have an energy 
equal to zero, whereas all others have an equal energy e larger than zero. 
For this special case it is possible to obtain the critical temperature in 
terms of e and show that the phase transition at that temperature is indeed 
of first order. The derivation runs similarly to the one given by Nagle c9) 
for four-coordinated compounds and will be repeated here with some 
modifications. 

We will consider a normal three-dimensional lattice, of the ReO 3 type, 
and assume normal cyclic boundary conditions in a layer perpendicular to 
the (1,1,1) axis. If we view the lattice along the (1,1, I ) axis, it is clear that 
every octahedron is connected to three other octahedra in the layer below 
and above its own layer (i.e., connected to six octahedra in total). Note 

Fig. 2. The 20 different edge configurations around a six coordinated vertex. 
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that in these layers perpendicular to the (1,1,1) axis none of the octahedra 
is directly connected to any other octahedron in that same layer. Actually, 
all results we will derive only require that every vertex is connected to three 
vertices in the layer below and to three vertices in the layer above its own 
layer. Hence, the results will also apply to cubic and hexagonal close 
packings of the vertices (although the space group of the total structure 
will in general be lower even in the high-temperature phase). 

Instead of considering the direction of the edges, we will specify a state 
of a vertex by drawing ( + ) and ( - ) lines along its connected edges. A ( + ) 
line is drawn along an edge when the projection of its orientation on the 
(1,1,1) axis is up and otherwise a ( - )  line is drawn. In fact we will connect 
every ( + ) line below the central atom with an arbitrary ( + ) line above the 
central atom, and likewise for the ( - )  lines, such that we have three lines 
[ ( + )  or ( - )  or any combination] running from the lower triangle 
through the octahedron to the upper triangle [all of course still viewed 
along the (I,1,1) axis ]. It is then clear that every possible configuration of 
lines specifies a state of the vertex, although some line configurations may 
specify the same state. If we connect all lines coinciding on the same edge, 
we get in total 3n lines describing the state of the system, where we have 
n octahedra per layer. The two vertex configurations with energy zero have 
either three ( + ) lines or three ( - ) lines running through them, whereas all 
other configurations have either two ( + )  and one ( - )  lines or one ( + )  
and two ( - )  lines running through them. First it will be shown that below 
T c the internal energy per site and the entropy per site equal zero. 

3. THE FREE ENERGY BELOW Tc 

If we have N vertices in the system and call the number of vertices with 
three ( + ) lines running through them N 3 +, the number of vertices with two 
( + )  lines N2+, the number of vertices with one ( + )  line N2_, and those 
with no ( + )  lines N3_, we find that N = N 3 +  + N  3_ + N 2 +  + N 2 _ .  The 
partition function has the following form: 

Z ( T ) =  ~ e -tN'++N~-)K K =  e-- (1) 
' k T  s t a t e s  

We define T c as 

E 

kT~ - In 3 (2) 

which, as will become apparent later, is indeed the critical temperature. 
Instead of summing over the possible states in (1), we will sum over the 
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possible line configurations. Since many line configurations specify the same 
state, we must correct for this. Three ( + )  lines can run through a vertex 
in six different ways [the same goes for three ( - )  lines] still specifying the 
same edge directions around the vertex. Two ( + )  lines [ and also two ( - )  
lines] can run through a vertex in two different ways for a given edge con- 
figuration. Hence we find 

Z(T)= ~, 6-(m+ +m-)2-(N2+ +u2-)e -(A~2+ +N2-)x 
lines 

= ~ 6-u2-Ne-(N2+ +N2-)(K--In6)e(N~+ +N3-)In2 

lines 

At Tc this leads to 

(3) 

Z(Te)= Z 6--'V2-%NInZ= ~ 6-A' 
lines lines 

(4) 

We now just have to count the number of possible different line configura- 
tions. If the lines were indistinguishable, three lines could run at six dif- 
ferent ways through every vertex, leading to 6 N different line configura- 
tions. Since every one of the 3n lines may be either ( + )  or ( - ) ,  we fmd 
in total 23"6 N possible line configurations. Therefore 

Z(T~) = 2 a" (5) 

If we take the thermodynamic limit N ~ ~ such that n /N  ~ 0, then 

1 
limoo ~ l n  Z(Tc) = 0 (6) 

Z ( T )  is a monotonic increasing function, because all its terms in the 
summation (1) are positive and increase with temperature. When T ~  0 all 
contributions to Z ( T )  of the states with N2+ or N2_ larger than zero 
vanish, such that only two states remain with Ns+ = N and N 3 _  = N. 
Hence 

lim lim ! .  In Z(T)  = 0 (7 ) 
T ~ 0  N ~ o o  /v 

Because of the foll6wing relations, with F the free energy, E the internal 
energy, and S the entropy: 

l i m - - F  = u l i ~ n o l l n Z ( T )  ' E OF/NkT --=S I OF (8) 
N~ ~ N k T  N O1/kT ' N N O T  
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we find for all T < Tc 

F E S 
0, ~ = 0 ,  for T < T  c (9) - Nk-"---~= O, ~ =  1u 

This can be interpreted as having, below To, a frozen state with N3+ or 
N3_ configurations, the ferroelectric state. In the next section, an exact 
high-temperature series expansion of Z ( T )  will be derived which will then 
be used to obtain a lower bound for E and S for T approaching Tc from 
above. 

4. EXACT H I G H - T E M P E R A T U R E  SERIES E X P A N S I O N  OF Z(T) 

The partition function may be rewritten as follows: 

Z(T)= ~, 1-[ �89 1-[ B(~;) (10) 
s t a t e s  edges ij vertices i 

where ~ specifies the edge configuration around vertex i. The function B(~;) 
equals 1 when ~; consists of three ( + )  or three ( - )  lines and e - r  
otherwise; c0(~;) equals + 1 ( - 1 )  if the projection of the direction of the 
edge between vertices i and j as specified by ~ is parallel (antiparallel) to 
the (1,1,1) axis. This means that the quantity �89 3vCo.(~i) Cji(~j) ] equals 1 
when the two edge directions specified by ~i and ~j are compatible and 
otherwise equals zero. Hence, we may replace the summation over the 
states by a summation over all individual possible vertex states. That is, 

Z(T)= E ~ l[l~-cij(~i) cji(~j)] ~ B(~i) ( 1 1 )  

{~} edges ij vertices i 

If we expand the product over the edges and make use of the fact that the 
summation of B(~) over all possible ~ equals (2 + 18e-tO), we obtain 

x E ]--I 2 + 18e-K I-[ co(~,) (12) 
graphs vertices r graph ' edges ~/~ graph 

where the summation is over all subgraphs, not necessarily connected. Now 
consider the single-vertex summation in brackets. If the order s; of the 
vertex i in the graph is odd, there is always, for every state ~; occurring in 
the summation, another state ~'i, for which the product over the edges has 
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a reversed sign but equal energy. Hence, for si odd, the single-vertex sum- 
mation equals zero. When sa = 2 we have to distinguish two cases: both 
edges may point to either the lower or upper triangle of the octahedron, or 
they may point to both triangles. In the first case the summation equals 
( 2 -  6e-K)/(2 + 18e -K) and in the second case (2 + 2e-K)/(2 + 18e-K). The 
same applies when Sg=4. When s i=6,  we find (2+ 18e-K)/(2+ 18e-K). 
Therefore, the high-temperature series expansion is 

Z(T)=(I+~e-"c)N[1 + ~, (1--3e-K)g2+g_4_ (l+e-K)j2+j4-g2-g4] 
(I + 9e-X) j~+j~ J graphs # 0 

(13) 

where the null graph contribution has been written outside the summation. 
The variable J2 denotes the number of vertices of degree two and g2 the 
number of vertices whose degree is two and with such a placement of the 
edges that they all either lie above or below the vertex. The same definition 
applies to J4 and g4. Note that the summation is only over graphs con- 
taining solely vertices of even degree. This means that there exists a 
Eulerian path through every connected part of the graph. A Eulerian path 
is a connected path traversing all edges exactly once. This will be used to 
show that g2 + g4 is even. If one traverses such a Eulerian path starting at 
the middle of one edge, the projection of this path on the (1,1,1) axis must 
contain an even number of reversals of directions to be able to reach this 
same edge from the other side. A vertex of degree two, not contributing to 
g2, does not give rise to a reversal of direction, whereas it does when it 
belongs to g2. A similar argument applies to vertices of order four. When 
the order of an vertex is six, it can give rise to either no or two reversals 
of direction, which is still an even number. Therefore, since the total 
number of direction reversals must be even, g2 + g,  must be even. This 
means that the summation contains only positive terms, leading to 

"~ e--K I 

2 i m  ( - ~ k T )  >~ln ( ~ + 4  9-e-K) 

lim lim ( -  ~ T )  O= T~[Tc N ~  

(14) 
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Because at Tc the boundary for F equals the exact value, the appropriate 
derivatives of the lower boundary for F give lower boundaries for E and S. 
We find 

E 3 
lim l i m  e 

(15) 
S 3 

lim limo~ k l n 3  

which shows that at Tc the internal energy per site and the entropy per site 
are discontinuous, proving that at Tc a first-order phase transition occurs. 

5. D I S C U S S I O N  A N D  C O N C L U S I O N S  

As we have now established that there is a first-order phase transition 
in this particular type of 20-vertex model, we must determine the kind of 
compounds for which the model might be used. 

Obviously, one can look for analogs of KDP. In that case the vertex 
should be an octahedron to which three protons are bonded. The stacking 
of the vertices may be simple cubic, cubic close-packed, or hexagonal 
close-packed. The protons should be shared between two octahedra of 
neighboring layers. 

In fact such compounds do exist in the form of salts of HsIO 6. The 
structures of (NH4)2H3IO6 and Na2H3IO6 have been determined. (l~ 
In ref. 10 it is also shown that the binding protons do indeed occupy two 
positions between two octahedra. However, these compounds are reported 
to be antiferroelectric instead of ferroelectric. (~2) This probably can be 
ascribed to the fact that the vertex energies in these compounds are 
different from those assumed here. 

A similar ferroelectrically ordered compound is N a ( H 3 0 ) H s I O 6 .  (13) 
Here again our model may not apply, as the oxonium ion binds preferen- 
tially to one side of an IO6 sheet, pushing all bridging protons between 
sheets to the other side of the sheet. Hence, the vertex energies must be 
different from those assumed here. We would like to remark, however, that 
only a few salts have been studied, and it may be possible that different 
countercations may give rise to different ordering behavior, as is the case 
for KDP (ferroelectric) and NH4H2PO4 (antiferroelectric). 

Another class of compounds to which the model may apply are cubic 
perovskites, such as CsGeC13. This compound consists of Ge ions with a 
lone pair, surrounded by six chlorine ions. Every chlorine ion is shared 
between two Ge ions. The lone pair may point in different directions in the 
GeC16 octahedron, giving rise to different vertex configurations. The chosen 
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vertex energies may  then serve as a (very) crude approx imat ion  to the 
energies of  the octahedron,  especially when a uniaxial  pressure along 
the (1,1,1) direct ion is applied,  such that  two vertex configurat ions obta in  
a lower energy than the others (e is nonzero).  CsGeC13 indeed shows a 
paraelectr ic-ferroelectr ic  phase t ransi t ion at 4 2 8 K ,  ~4~ however,  at a 
pressure equal to zero. At zero pressure e is zero; hence, again this shows 
that  the 20-vertex model  cannot  be used to describe this specific phase 
transit ion,  but  it might  be appl icable  to a possible var ia t ion of  T c with 
pressure. In this case, it is to be expected that  two directions [ paral lel  and 
anitparal lel  to (1,1,1)] of  the lone pair  will have a lower energy than the 
others. This may  indeed change the Tc of the phase t ransi t ion and p robab ly  
this change can be related to a single-vertex energy difference e as is done 
above. We are aware of  the fact that  this is all very speculative. 

The impor tan t  result of  this work  is that  we have derived an exact 
relation between Tc and e, and that  we have shown that  the phase tran- 
sition is of  first order,  s tar t ing only from local propert ies  (the vertex 
energies) of  the lattice. 
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